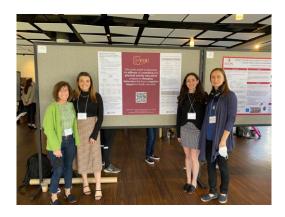
"NUTRITION, LIFESTYLE & METABOLIC SYNDROME (MetS): BRIDGING KNOWLEDGE & PRACTICE" A COMPREHENSIVE APPROACH

Svetlana Nepocatych, PhD, RD Elizabeth Bailey, MA, Wellness Coach Contact information: <u>snepocatych@elon.edu</u> & <u>ebailey@elon.edu</u>


NCCRA & PCNA, 2024

Who are we?

@ ELON UNIVERSITY

FYOU

Definition of MetS

Metabolic Syndrome is a cluster of conditions that increase the risk of cardiovascular disease, stroke, and type 2 diabetes.

Decrement in Physical Activity

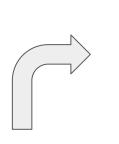
Dietary Patterns

Sedentary Lifestyle

MetS Diagnostic Criteria

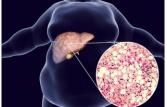
TABLE 1. Previous Criteria Proposed for Clinical Diagnosis of Metabolic Syndrome

Clinical Measure	WHO (1998)	EGIR	ATP III (2001)	AACE (2003)	IDF (2005)
Insulin resistance	IGT, IFG, T2DM, or lowered insulin sensitivity* plus any 2 of the following	Plasma insulin >75th percentile plus any 2 of the following	None, but any 3 of the following 5 features	IGT or IFG plus any of the following based on clinical judgment	None
Body weight	Men: waist-to-hip ratio >0.90; women: waist-to-hip ratio >0.85 and/or BMI >30 kg/m ²	WC \geq 94 cm in men or \geq 80 cm in women	WC \geq 102 cm in men or \geq 88 cm in women†	BMI \geq 25 kg/m ²	Increased WC (population specific) plus any 2 of the following
Lipid	TG ≥150 mg/dL and/or HDL-C <35 mg/dL in men or <39 mg/dL in women	TG \geq 150 mg/dL and/or HDL-C $<$ 39 mg/dL in men or women	TG \geq 150 mg/dL	$TG \ge \!\! 150 \text{ mg/dL}$ and HDL-C $<\!\! 40 \text{ mg/dL}$ in men or $<\!\! 50 \text{ mg/dL}$ in women	TG \geq 150 mg/dL or on TG Rx
			HDL-C <40 mg/dL in men or <50 mg/dL in women		HDL-C <40 mg/dL in men or <50 mg/dL in women or on HDL-C Rx
Blood pressure	≥140/90 mm Hg	≥140/90 mm Hg or on hypertension Rx	≥130/85 mm Hg	≥130/85 mm Hg	≥130 mm Hg systolic or ≥85 mm Hg diastolic or on hypertension Rx
Glucose	IGT, IFG, or T2DM	IGT or IFG (but not diabetes)	>110 mg/dL (includes diabetes)‡	IGT or IFG (but not diabetes)	≥100 mg/dL (includes diabetes)
Other	Microalbuminuria			Other features of insulin resistance§	


Reference: Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005 Oct 25;112(17):2735-52. doi: 10.1161/CIRCULATIONAHA.105.169404. Epub 2005 Sep 12. Erratum in: Circulation. 2005 Oct 25;112(17):e298. PMID: 16157765.

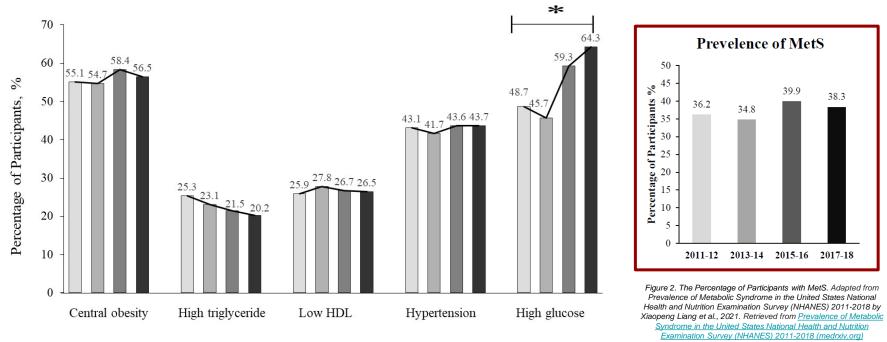
Metabolic Syndrome (MetS) Criteria - AHA/NHLBI

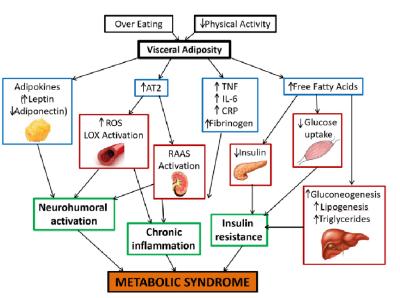
TABLE 2. Criteria for Clinical Diagnosis of Metabolic Syndrome Figure 1


Measure (any 3 of 5 constitute diagnosis of metabolic syndrome)	Categorical Cutpoints	
Elevated waist circumference*+	≥102 cm (≥40 inches) in men	
'	\geq 88 cm (\geq 35 inches) in women	
Elevated triglycerides	≥150 mg/dL (1.7 mmol/L)	
	or	
	On drug treatment for elevated triglycerides‡	
Reduced HDL-C	<40 mg/dL (1.03 mmol/L) in men	
	<50 mg/dL (1.3 mmol/L) in women	
	or	
	On drug treatment for reduced HDL-C‡	
Elevated blood pressure	≥130 mm Hg systolic blood pressure	
	or	
	\geq 85 mm Hg diastolic blood pressure	
	or	
	On antihypertensive drug treatment in a patient with a history of hypertension	
Elevated fasting glucose	≥100 mg/dL	
	or	
	On drug treatment for elevated glucose	

Reference:Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005 Oct 25;112(17):2735-52. doi: 10.1161/CIRCULATIONAHA.105.169404. Epub 2005 Sep 12. Erratum in: Circulation.2005 Oct 25;112(17):e297. Erratum in: Circulation. 2005 Oct 25;112(17):e298. PMID: 16157765.

Prevalence of MetS



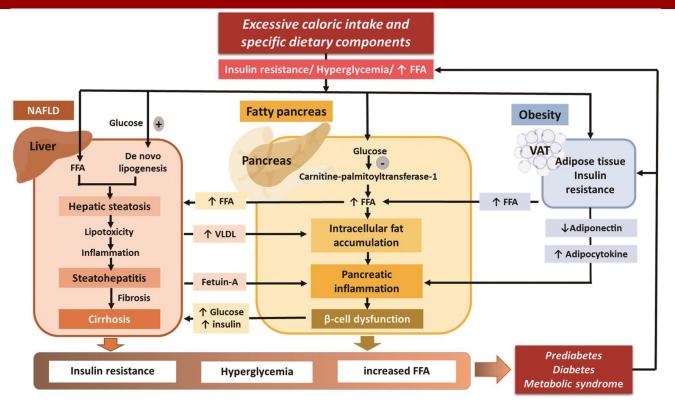

Figure 1. The Percentage of Participants with Each Component of MetS. Adapted from Prevalence of Metabolic Syndrome in the United States National Health and Nutrition Examination Survey (NHANES) 2011-2018 by Xiaopeng Liang et al., 2021. Retrieved from <u>Prevalence of Metabolic Syndrome in the United States</u> National Health and Nutrition Examination Survey (NHANES) 2011-2018 (medrxiv.org) **ELON** UNIVERSITY

Pathophysiology of MetS

- Core Mechanism: Insulin resistance???
- Key Players:
 - Visceral fat
 - Inflammatory cytokines
 - Dysregulated lipid metabolism
 - Oxidative stress

• Result:

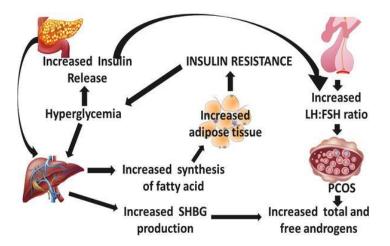
- Chronic inflammation
- Endothelial dysfunction
- Metabolic disturbances



Reference: Rochlani, Y.M., Pothineni, N.V., Kovelamudi, S., & Mehta, J.L. (2017). Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. *Therapeutic Advances in Cardiovascular Disease*, *11*,

215 - 225.

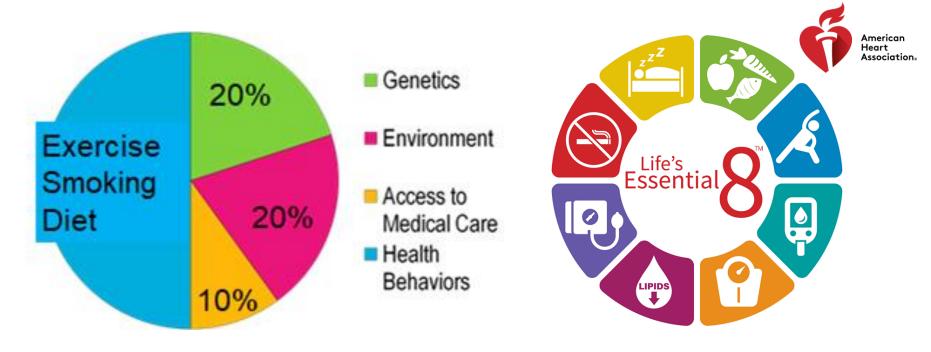
Pathophysiology of MetS



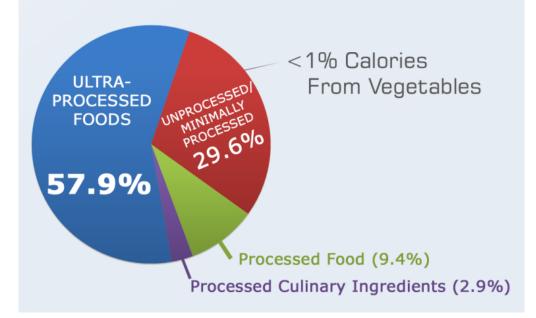
Reference: Rugivarodom M, Geeratragool T, Pausawasdi N, Charatcharoenwitthaya P. Fatty Pancreas: Linking Pancreas Pathophysiology to Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2022;10(6):1229-1239. doi: 10.14218/JCTH.2022.00085.

ELON UNIVERSITY

Identifying Patients at Risk for MetS


- MetS criteria (AHA/NHLBI or IDF)
- H/o symptoms of OSA
- H/o PCOS in premenopausal women
- Family H/o CVD and DM
- Blood pressure and waist circumference
- Laboratory investigations:
 - Fasting lipid profile and fasting glucose
 - hs-CRP, fibrinogen, uric acid, urinary microalbumin
 - LFT for NAFLD
 - Sleep study for OSA
 - Testosterone, FSH, LH for PCOS

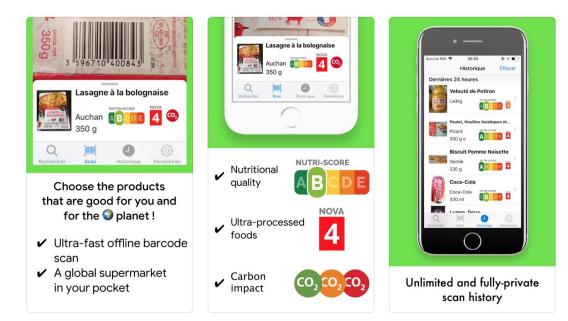
Reference: Manu, Thomson Soni, Victoria and Pranav Kumar Prabhakar. Pathophysiology of Polycystic Ovarian Syndrome. Published: 07 January 2022. DOI: 10.5772/intechopen.101921


Contributors to Overall Health

Role of Dietary Habits on MetS

AMERICAN DIET STATS

Reference: Martínez Steele E, Baraldi LG, Louzada MLDC, et al/Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. *BMJ Open* 2016;6:e009892. doi: 10.1136/bmjopen-2015-009892


Role of Dietary Habits on MetS - NOVA

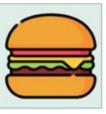
NOVA Food classification

Unprocessed or minimally processed foods	Processed culinary ingredients	Processed foods	Ultra-processed foods
Foods which did not undergo processing or underwent minimal processing technics, such as fractioning, grinding, pasteurization and others.	These are obtained from minimally processed foods and used to season, cook and create culinary dishes.	These are unprocessed or minimally processed foods or culinary dishes which have been added processed culinary ingredients. They are necessarily industrialized.	These are food products derived from foods or parts of foods, being added cosmetic food additives not used in culinary.
Legumes, vegetables, fruits, starchy roots and tubers, grains, nuts, beef, eggs, chicken, milk	Salt, sugar, vegetable oils, butter and other fats.	Bottled vegetables or meat in salt solution, fruits in syrup or candied, bread, cheeses, purees or pastes.	Breast milk substitutes, infant formulas, cookies, ice cream, shakes, ready-to-eat meals, soft drinks and other sugary drinks, hamburgers, nuggets.

Practical Applications of Open Food Facts App

Scan this QR code from your mobile to download the app!

Role of Dietary Habits on MetS


Ultraprocessed Foods Consumption and Increased Risk of Metabolic Syndrome in Adults – the ELSA-Brasil

Ultraprocessed foods (UPFs) are formulations of ingredients that result from a series of industrial processes.

In a prospective **cohort study** of 8,065 participants from ELSA-Brasil, we aimed to investigate the association between UPFs consumption and the incidence of MetS.

- UPFs increases the risk of chronic diseases such as cancer, CVD, and diabetes.
- Metabolic syndrome (MetS) precedes and contributes to such chronic diseases.

We found that: For every 150 g/day increments Mets risk increased by 7% Comparing > 552 vs. < 234 g/day Risk increased by 33%

The **increased risk** of MetS associated with UPFs may impact the development of many chronic diseases.

Findings contribute to the planning of nutritional counseling when preventive measures are possible and desirable.

Reference: Scheine Leite Canhada, Álvaro Vigo, Vivian Cristine Luft, Renata Bertazzi Levy, Sheila Maria Alvim Matos, Maria del Carmen Molina, Luana Giatti, Sandhi Barreto, Bruce Bartholow Duncan, Maria Inês Schmidt; Ultra-Processed Food Consumption and Increased Risk of Metabolic Syndrome in Adults: The ELSA-Brasil. *Diabetes Care* 1 February 2023; 46 (2): 369–376. https://doi.org/10.2337/dc22-1505

Dietary Approaches to Managing MetS

Dietary Pattern	Nutritional Distribution	Improvements in MetS Criteria	
Mediterranean diet	 35–45% kcal/d from total fat (mainly MUFA ¹, EVOO and nuts being the principal source) 35–45% kcal/d from CH 15–18% kcal/d from protein 	Reduction of CVD incidence and outcomes Decreased BP (systolic and diastolic) Inverse association with mortality Improvements in dyslipemia Decreased incidence of T2DM	
DASH diet	 Total fats 27% kcal/d Saturated fats 6% kcal/d Dietary cholesterol CH 55% kcal/d Proteins 18% kcal/d 	Reduction of BP (systolic and diastolic) Reduction in BMI and waist circumference Improvement in cardiometabolic profile Reduction in T2DM incidence	
Plant-based diets	 Reduction or restriction of animal-derived foods High intake of plant-source foods Fat profile rich in UFAs 	Reduction of BP (systolic and diastolic) Decreased body weight and risk of obesity Reduction of the risk of CVD Decreased all-cause mortality Decreased risk of T2DM	
Low CH diets and very low CH diets (ketogenic diets)	 <50% kcal/d from carbohydrates and <10% kcal/d from CH in ketogenic diets High protein (20–30% kcal/d) High fat intake (30–70% kcal/d) 	Weight-loss and weight-loss maintenance Reduction of DBP Reduction of LDL-c and triglycerides levels Increase of HDL-c levels Improvements in insulin resistance Reduction of HbA1c levels	

Table 1. Dietary strategies and potential health benefits for Metabolic Syndrome (MetS).

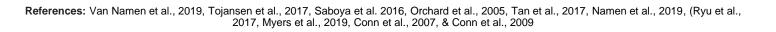
UNIVERSITY

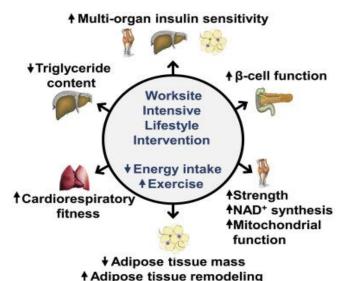
Dietary Approaches to Managing MetS

Table 1. Dietary strategies and potential health benefits for Metabolic Syndrome (MetS).

Dietary Pattern	Nutritional Distribution	Improvements in MetS Criteria	
Nordic diet		Reduction of BP (systolic and diastolic) Increase of HDL-c levels	
Other dietary patterns and strategies Intermittent fasting	Fasting for a long period of time	Weight loss Improvements in insulin resistance Improvements in dyslipidaemia Reduction of BP (systolic and diastolic) Decreased risk of T2DM Decreased risk of CVD	
Low-fat diet		Reduction of BP (systolic and diastolic) Short-term improvement of cholesterol profile Short-term weight loss Reduced risk of all-cause mortality	
High protein diet	High protein (20–30% kcal/d) or 1.34–1.50 g/Kg body weight/d from protein Low CH (40–50% kcal/d)	Reduction of triglycerides levels	

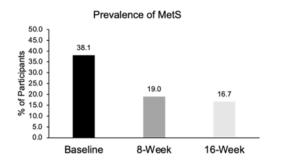
Reference: Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients. 2020 Sep 29;12(10):2983. doi: 10.3390/nu12102983. PMID: 33003472; PMCID: PMC7600579.

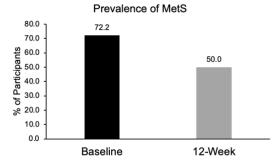

Role of Lifestyle interventions on MetS


<u>Multifaceted lifestyle intervention programs:</u>

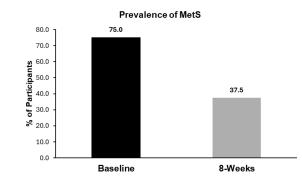
- $\circ \downarrow MetS$
- \circ \downarrow WC, SPB, DBP, TRY & FBG
- † Physical activity & fitness
- ↑ Dietary behaviors&
- ↑ Quality of Life

• Workplace intervention programs:

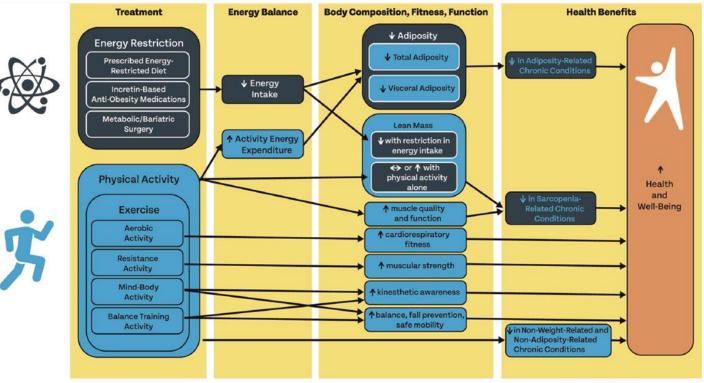

- $\circ \downarrow$ MetS, WC, BMI, Lipids & FBG
- ↑ Physical activity & fitness
- †Job attendance & satisfaction
- Job stress & employee absenteeism



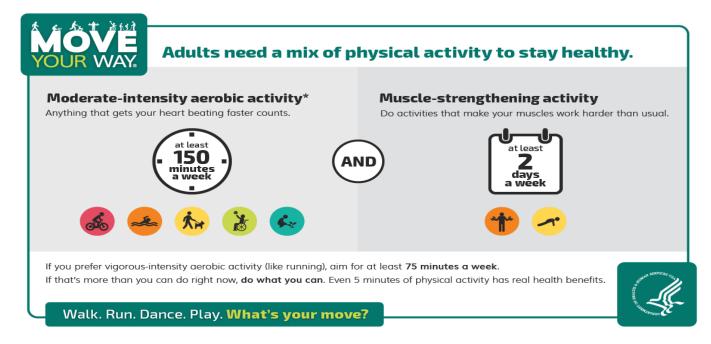
Workplace Intervention Programs at Elon


HEY I - 16 wk program

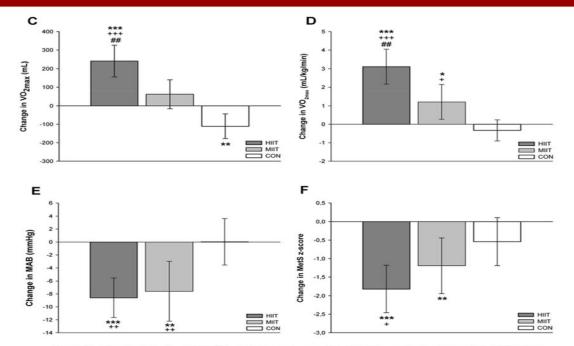
HEY II - 12 wk program


ThriveWell - 8 wk program

Role of Physical Activity on MetS - Theoretical Framework

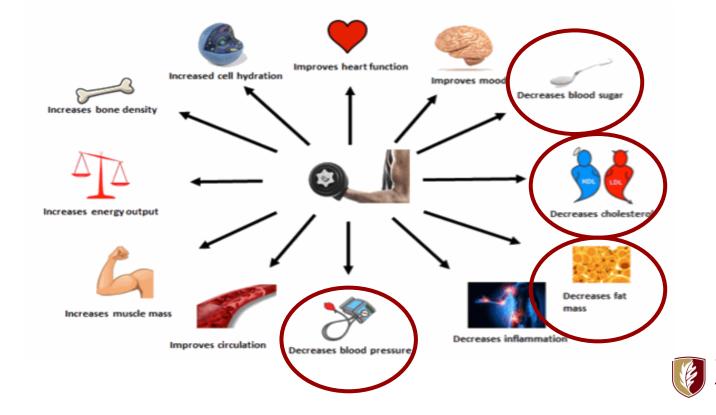

Reference: Jakicic JM, Apovian CM, Barr-Anderson DJ, Courcoulas AP, Donnelly JE, Ekkekakis P, Hopkins M, Lambert EV, Napolitano MA, Volpe SL. Physical Activity and Excess Body Weight and Adiposity for Adults. American College of Sports Medicine Consensus Statement. Med Sci Sports Exerc. 2024 Oct 1;56(10):2076-2091. doi: 10.1249/MSS.00000000003520.

American College of Sports Medicine,


Figure 1: Theoretical framework for how physical activity contributes to body composition, components of fitness, and health within approaches targeting body weight regulation.

Role of Physical Activity on MetS - The National PA Guidelines

Role of Physical Activity on MetS


Effects of <u>very low volume</u> <u>high intensity</u> versus <u>moderate intensity</u> interval training in obese metabolic syndrome patients: a randomized controlled study

Reference: Reljic, D., Frenk, F., Herrmann, H.J. et al. Sci Rep 11, 2836 (2021). https://doi.org/10.1038/s41598-021-82372-4

Figure 2. Changes in body weight (**A**), waist circumference (**B**), absolute maximal oxygen uptake (**C**), relative maximal oxygen uptake (**D**), mean arterial blood pressure (**E**), and metabolic syndrome z-score (**F**). HIIT, high-intensity interval training group; MIIT, moderate-intensity interval training group; CON, control group; VO_{2maxo} maximal oxygen uptake; MAB, mean arterial blood pressure; MetS, metabolic syndrome. *(p < 0.05), **(p < 0.01), significantly different from pre-intervention. *(p < 0.05), **(p < 0.01), significant difference vs. CON; ^{##}(p < 0.01), significant difference vs. MIIT.

Role of Physical Activity on MetS

UNIVERSITY

Role of Physical Activity on MetS

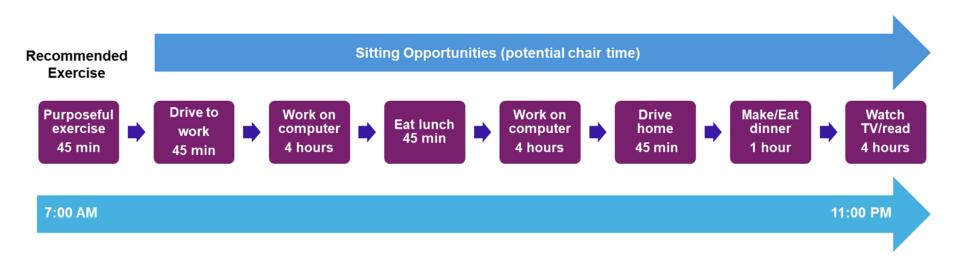
WHAT IS NEAT AND WHY IS IT IMPORTANT?

NEAT = NON-EXERCISE ACTIVITY THERMOGENESIS AKA: ALL MOVEMENT THAT ISN'T STRUCTURED EXERCISE

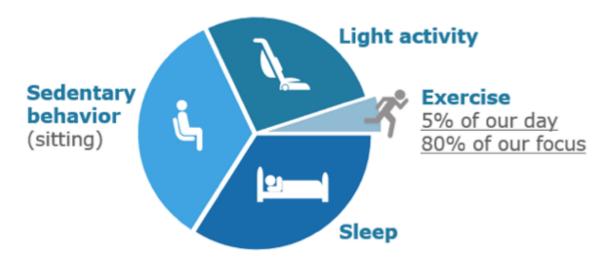
1 HOUR OF EXERCISE = 4% OF YOUR DAY

NEAT = 63% OF YOUR DAY

(IF YOU SLEEP 8 HOURS)


Increasing your NEAT will...

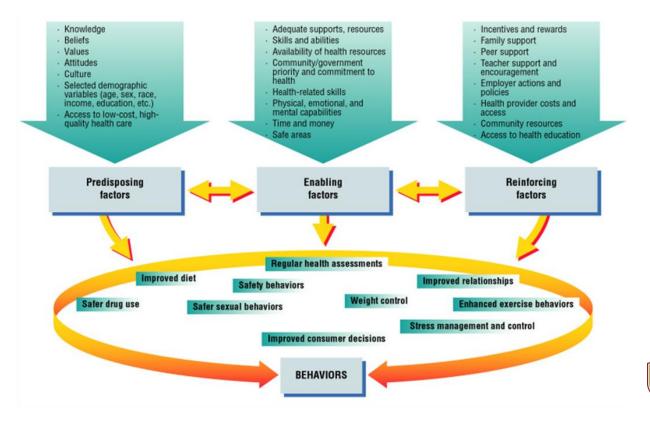
Are you an Exercising Couch Potato?



Reference: Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too Little Exercise and Too Much Sitting: Inactivity Physiology and the Need for New Recommendations on Sedentary Behavior. Curr Cardiovasc Risk Rep. 2008 Jul;2(4):292-298. doi: 10.1007/s12170-008-0054-8. PMID: 22905272; PMCID: PMC3419586.

24-Hour Activity Cycle (24-HAC)

A Typical (Healthy) 24-Hour Day



Reference: Keeping Seniors Active - A 24 Hour Approach - Stanford Center on Longevity

Practical Applications of 24-HAC Tracking

Factors Impacting Behavior Change

Collaborative Care Approach

- Interdisciplinary communication
- Tailored interventions
- Patient education
- Exercise
- Lifestyle modification
- Mental health support

Each healthcare provider brings expertise that, when combined, maximizes the patient's potential for long-term success in managing MetS

Motivational Interviewing (MI)

• **Motivational Interviewing (MI)** is a collaborative form of communication, designed to empower people to change by helping them to focus on their values and individual capacity for change.

- In a recent review, MI was found to be effective for increasing motivation for behavioral change in patients with various behaviorally influenced health issues and for promoting adherence to treatment.
 - Reference: Bischof G, Bischof A, Rumpf HJ (2021): Motivational interviewing—an evidence-based approach for use in medical practice. *Dtsch Arztebl Int*, 118: 109–15. DOI: 10.3238/arztebl.m2021.0014

Express empathy

Accomplished through validating the client's experience and communicating an understanding of that experience.

Roll with resistance

Accomplished by encouraging client autonomy in decision making and asking questions that assist the client in making their own best decisions.

Develop discrepancy

Accomplished by asking questions that help the client discover incongruencies between their stated goals and their current behaviors.

Support self-efficacy

Accomplished by leveraging affirmations and reflections from the client about their own ability to achieve their stated goals.

Reference: Bischof G, Bischof A, Rumpf HJ (2021): Motivational interviewing—an evidence-based approach for use in medical practice. *Dtsch Arztebl Int*, 118: 109–15. DOI: 10.3238/arztebl.m2021.00

Practical Applications of MI

Open-Ended Questions

 "What are your thoughts on how your eating habits are affecting your health?"

Reflective Listening

 "It sounds like you're worried about how hard it might be to change your diet."

Affirmations

 "It sounds like you've already prioritized cutting back on sugary drinks."

Eliciting Change Talk

 "What would be some of the benefits of losing weight or improving your blood sugar levels?"

Goal-Setting Strategies (SMART)

Specific Clearly State your Goal Measurable Ensure you can Measure Success Attainable Set Goals you know you can Achieve Relevant Set Goals Relevant to your Career or Education Time-Based

Goals should align with patients lifestyle, preferences, and readiness for change

"I will walk for 30 minutes at an intensity where I can talk but not sing after dinner on Monday, Wednesday, Friday for the next three months"

Now it's Your Turn to Practice

Scenario: You are a healthcare professional meeting with a patient, Alex, who has been recently diagnosed with metabolic syndrome.
Alex is overweight, has high blood pressure, and high blood sugar levels. They have expressed concern about their health but feel overwhelmed by the thought of making significant lifestyle changes.
Alex enjoys eating fast food and has a sedentary lifestyle but has started to notice fatigue and discomfort in daily activities.

Objective is to use motivational interviewing techniques to:

- 1. Understand Alex's ambivalence or resistance to change
- 2. Help explore motivations for improving their health
- 3. Help explore challenges and strengths
- 4. Collaboratively set **SMART goals** related to diet and physical activity

Group Discussion & Debrief

- What strategies helped <u>build rapport</u> and trust with the patient?
- How did you assess and address the patient's readiness for change?
- What was effective in eliciting <u>change talk and</u> <u>motivating</u> the patient?
- How did you integrate challenges, <u>past</u> <u>successes or strengths</u> into the conversation?
- In what way did you organize **SMART goals?**

