Pacing and ICD Considerations in Cardiac Rehab

Kimberly Dail, BSN, RN, CV-BC, CCRP WakeMed Cary Cardiac Rehab kdail@wakemed.org 919.350.1995

- Explain different types of pacemakers, ICDs and the NBG Code
- Describe indications for PPMs and ICDs
- Explain basic pacing and ICD functions
- Identify paced rhythms
- Explain timing intervals in pacemakers and ICDs
- Describe upper rate behavior
- Explain chronotropic incompetence and how devices assist in exercising patients
- Describe necessary requested device parameters/settings in the cardiac rehab patient
- Describe the detection zones and parameters used to identify a tachyarrhythmia
- Explain the use of CRT-P and CRT-D therapies in Heart Failure patients

SINGLE CHAMBER SYSTEM

- One lead
 - Atrium
 - Ventricle (most common)
- May be used for patients in chronic AF (VVI pacemaker) or patients with sinus node dysfunction and no history of AV block (AAI pacemaker)

VVI Pacemaker

AAI Pacemaker

DUAL CHAMBER SYSTEM

- Two leads
 - One lead implanted in the atrium
 - One lead implanted in the ventricle
- Provides AV synchrony and pacing support in both atrium and ventricle if needed

DDD Pacemaker

TRIPLE CHAMBER SYSTEM

- Three Leads:
 - Right Atrium
 - Right Ventricle
 - Left Ventricle (via the Coronary Sinus vein)
- Most commonly called a Bi-Ventricular Pacemaker but also called Cardiac Resynchronization Therapy (CRT-P)
- Paces both ventricles together to "resynchronize" the beat

DDD BiV Pacemaker

Indications

Pacemakers

- Sinus Node Dysfunction
- Symptomatic Chronotropic Incompetence
- AV Block
- Atrial Fibrillation

ICDs

- Surviving Cardiac Arrest d/t VF or VT
- Spontaneous
 VT
- ICM AND NICM with EF <35%

CRT

 Symptomatic HF with LVEF
 <35%, QRS
 >120->150ms
 and LBBB

Post-Implant and Exercise

Common Restrictions

Keep affected arm/shoulder below shoulder level x ~4 weeks

No lifting > 5 lbs x ~ 4 weeks Infection monitoring

Infection rate is ~1%

Most occur in the 1st month after implant

NBG Code

- The NBG code is a lettered code that describes the basic function of pacing devices
- Tells us which chamber(s) is being paced and sensed
- Most common modes programmed:

DDD = Dual Chamber Pacing and Sensing

VVI = Single Chamber Pacing and Sensing (Ventricle Only)

AAIR-DDDR = Paces AAI/R with DDD back-up to allow for intrinsic conduction as much as possible

"R" = Rate Response

NBG CODE – THE USUAL PACING MODES

Disregard/Not usually seen

Chamber(s) Paced

S = Single (A or V)

O = None

Chamber(s) Sensed

S = Single (A or V)

O = None A = Atrium A = Atrium V = Ventricle V = Ventricle \mathbf{D} = Dual (A +V) \mathbf{D} = Dual (A + V) Sensing

O = None I = Inhibited \mathbf{D} = Dual (T + I)

Response to

Modulation

O = None R = Rate

Rate

modulation

Pacing O = None $\mathbf{A} = Atrium$

Multisite

V = Ventricle

 \mathbf{D} = Dual (A + V)

Examples of pacing modes which are typically programmed: **DDIR DDIR** Used for AFib; non-tracking mode DDD VVI DDDR VVIR AAIR

"R" means "Rate response"

Pacemaker will increase pacing rate in response to exercise – if patient does not increase his own rate

Knowledge Check

DDDR

- What chamber is being paced?
- What chamber is being sensed?
- What happens when a chamber is sensed?
- Is Rate Response on?

VVIR

- What chamber is being paced?
- What chamber is being sensed?
- What happens when a chamber is sensed?
- Is Rate Response on?

KNOWLEDGE CHECKPOINT

Label each EKG with the faces of pacing (AS-VS, AP-VS, AP-VP, AS-VP).

CAPTURE THRESHOLD

The minimum electrical stimulus needed to consistently capture the heart outside of the heart's own refractory period

Ventricular pacemaker 60 ppm

FACTORS THAT CAN AFFECT THRESHOLDS

- Pacemaker circuit (lead) integrity
 - Insulation break
 - Wire fracture
- The characteristics of the electrode
- Electrode placement within the heart
- Drugs
- Electrolytes
- Sleeping/Eating

Hayes DL, Asirvatham SJ, Friedman PA. Cardiac Pacing, Defibrillation, and Resynchronization. Hoboken, NJ: Wiley-Blackwell; 2010.

Timing Cycles

PPMs and ICDs are a bunch of "clocks" with timers

Every paced or native beat starts a new clock

- Lower Rate (LR) = the lowest rate allowed by the device
- Sensed AV (SAV) = the timer starting from a sensed atrial beat
- Paced AV (PAV) = the timer starting from a paced atrial beat
- Upper Tracking Rate (UTR) = the fastest rate a device will track the atrium
- Upper Sensor Rate (USR) = the fastest rate a device will allow the sensor to pace

DDD EXAMPLES CONTINUED THE FOUR FACES OF DDD

3. Atrial sensing, ventricular pacing

4. Atrial and ventricular sensing

Every beat triggers a new timer

An AS (P-wave) inhibits lower rate timer and triggers an AV delay timer (SAV)

 SAV expires without being inhibited by a VS, resulting in a VP

An AS (P-wave) inhibits lower rate timer and triggers an AV delay timer (SAV)

 Before the SAV can expire, it is inhibited by a VS (R-wave)

DDD EXAMPLES THE FOUR FACES OF DDD

1. Atrial and ventricular pacing

AP re-starts lower rate timer and triggers an AV delay timer (PAV)

 PAV expires without being inhibited by a VS, resulting in a VP

2. Atrial pacing, ventricular sensing

AP restarts lower rate timer and triggers an AV delay timer (PAV)

 Before PAV can expire, it is inhibited by a VS (R-wave)

The PPM cannot violate timers!

Upper Rate Behavior – Help Us!

Upper Tracking Rate (UTR)

- The fastest heart rate the pacemaker will track the atrium – 1:1 AV Synchrony
- This is programmable
- Should be programmed "just above the maximum sinus rate reached during exercise" to allow for 1:1 conduction and prevent Wenkebach and 2:1 AV Block

R) Upper Sensor Rate (USR)

- Is the upper sensordriven rate limit reached during vigorous exercise
- This is programmable
- Is usually programmed to 85% of the agepredicted maximum heart rate (220 – age in years)

UPPER TRACKING RATE IN DDD & VDD MODES THE PACEMAKER WILL "TRACK" THE ATRIUM

Tracking = Pacing the ventricle after an atrial intrinsic event

Maintains AV Synchrony Want to limit how fast we pace

The GOAL is to maintain AV Synchrony at all times

Cardiac Pacing and Defibrillation: A Clinical Approach. Hayes, Lloyd, Friedman 2000

When the sinus rate exceeds the programmed maximum tracking rate (UTR), several upper rate behaviors can occur:

- 1. First, Wenkebach may occur
- 2. Then 2:1 AV Block can occur

Top picture: *Wenkebach occurs *The PPM cannot violate the UTR timing cycle!

Bottom picture: *2:1 AV Block *Every other sinus beat falls into the PPM's refractory period and "is not seen" *Heart Rate falls by half

Chronotropic Incompetence (CI)

- The inability of the heart rate to increase appropriately in response to an increase in activity or metabolic demand.
- CI is common in various types of cardiac disease including sick sinus syndrome, atrioventricular (AV) block, coronary artery disease, and heart failure. It can also occur in patients with no structural heart disease.
- CI produces exercise intolerance that impairs quality of life, and is an independent predictor of major adverse cardiovascular events and overall mortality
- During maximal aerobic exercise in healthy humans, Vo₂ increases approximately 4-fold. This is achieved by a 2.2-fold increase in heart rate.
- Thus, the increase in HR is the strongest contributor to the ability to perform sustained aerobic exercise.

Circulation. Chronotropic Incompetence: Causes, Consequences, and Management. <u>*H. Brubaker and Dalane W. Kitzman, 8Mar 2011*</u>

- Numerous studies have shown the prevalence of CI is roughly 45% for heart failure patients, and approximately 70% for CRT patients.
- The causes of CI may include medication, not exercising, or compromised heart function.

Source: Boston Scientific CRM-569208-AA; Right Rate Sensor

Rate Adaptive Pacing Sensor Types

- There are typically 2 types of rate adaptive pacing sensors: accelerometer-based sensors and respirationbased sensors.
- Blended sensors combine both sensor types.

Accelerometer-Based Sensors

- Most devices have a motion-based accelerometer sensor.
- Rate response is proportional to motion.

Respiration-Based Sensors

- Boston Scientific's RightRate[™] is a physiologic minute ventilation sensor.
- Rate response is highly correlated with breathing.

Source: Boston Scientific CRM-569208-AA; Right Rate Sensor

Rate Adaptive Pacing Sensors

A motion-based sensor may not always detect when the patient is exercising or being active, potentially resulting in inadequate rate response for activities such as:

- Riding a bicycle
- Holding a grandchild
- Carrying groceries
- Working in the garden

- Using a walker
- Swimming
- Lifting weights

Key Take-Aways

- Be On Alert for Chronotropic Incompetence
- Know if Rate Response is programmed ON/OFF
- Pacemaker configuration and programming can influence exercise capacity

Sources: 1. Boston Scientific CRM-569208-AA; Right Rate Sensor 2. AACVPR Guidelines for Cardiac Rehabilitation Programs 2021

SUDDEN CARDIAC ARREST IMPLANTABLE CARDIAC DEFIBRILLATORS

- Implantable cardiac defibrillators (ICDs) treat abnormal heart rhythms (ventricular arrhythmias) such as ventricular tachycardia and ventricular fibrillation.
- These life-threatening rhythms can cause sudden cardiac arrest (SCA), which results in death if not treated.
- 98% of people survive a lethal arrhythmia when treated with defibrillation.¹ Only 5% of people survive SCA without defibrillation.²

¹ Glikson M, Friedman PA. The implantable cardioverter defibrillator. Lancet. April 7, 2001;357(9262):1107-1117.

² Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities [corrections appear at J Am Coll Cardiol. April 21, 2009; 53(16):1473. J Am Coll Cardiol. January 6, 2009;53(1):147]. J Am Coll Cardiol. May 27, 2008;51(21):e1-62.

MAJOR FUNCTIONS OF AN ICD

- Sense appropriate cardiac signals
- Detect dangerous rhythms reliably
- Provide pacing and defibrillation therapy
- Store diagnostics

ICD Detection and Therapies

Detection		Interval (Rate)	Initial	Therapies		
VF	On	320 ms (188 bpm)	24/32 Ø	ATP During Charging, 35J x 6		
FVT	OFF	240 ms (250 bpm)		All Rx Off		
VT	OFF	360 ms (167 bpm)	16	All Rx Off		
Detection (V.)		VT Monitor, AF/Afl, Sinus Tach, Wavelet, TWave, Noise(Timeout)				

- Three detection zones and a monitor zone available
 - VF zone
 - Fast VT zone
 - VT zone
 - VT Monitor zone
- Able to program specific therapies for different arrhythmias.

Therapy Options

- DEFIBRILLATION
- ANTI-TACHYCARDIA PACING
 ~ aka "Painless Therapy"
 - ~ Rapid Pacing in short bursts to break VT
- CARDIOVERSION

Exercise Considerations

*VF detection, VT detection, Therapy Threshold

Maintain Target Heart Rate @ least 10 beats BELOW arrhythmia detection

If the exercise HR is flirting with detection zones, CONTACT THE PATIENT'S PHYSICIAN

*The patient is at risk of getting shocked w/exercise *Medication titration or ICD reprogramming is warranted

A Medtroni	ic
------------	----

Quick Look II

Device: Evera MRI[™] XT DR DDMB1D4

Device Status (Implanted: 1000000)

Date of Interrogation: 17-Aug-2023 13:25:07

ID: MW1786

Physician:

Sample Medtronic Interrogation Report

History: Primary Prevention, AT/AF + Sinus Node Dysfunction, Normal AV Conduction

Remaining Longevity		8.	3.7 years (17-A		ug-2023)		
			-				
RRT			> 5 years				
	(bas	ed on initial interr	ogation)				
			Atrial(5076)	RV(6935	M)		
Pacing Impeda	nce		456 ohms 418 ohms		15		
Defibrillation Impedance			RV=61		ohms		
Capture Thresh	Capture Threshold			0.625 V @ 0.40 ms 0.625 V @ 0.40 m			
Measured On			17-Aug-2023 17-Aug-2023				
Programmed A	mplitude/Pulse Wid	th	1.50 V / 0.40 ms 1.50 V /		0.40 ms		
Measured P/ R	Wave		4.0 mV	>20 mV			
Programmed S	ensitivity		0.30 mV	0.30 mV			
Parameter Sur	nmary						
Mode	AAIR<=>DDDR	Lower Rate	60 bpm	Paced AV	180 ms		
Mode Switch	171 bpm	Upper Track	140 bpm	Sensed AV	150 ms		
		Upper Sensor	140 bpm				
Detection		Rates	Therapies				
AT/AF	On (1 zone)	>171 bpm	Burst+, Ramp, C\	V Off			
VF	On	>200 bpm	ATP During Chan	ging, 35J x 6			
FVT.	OFF		All Rx Off				
VT	OFF		All Rx Off				

Enhancements On: VT Monitor, AF/Afl, Sinus Tach, Wavelet, Onset(Monitor), TWave, Noise(Timeout)

Clinical Status	Cardiac Co	ompass Trends (Jun-2022 to Aug-2023)						
Treated VF	0	Treated	>5 2	I P	ΪI	Ŧ	P I	22
VT (Off) AT/AF	0	VT/VF (#/day)	10210					
Monitored		AT/AF	123					
VT (150-200 bpm)	0	(hr/day)						
VT-NS (>4 beats, >200 bpm)	0		23 I					
High Rate-NS	0		13 I	1	11			
SVT: VT/VF Rx Withheld	0		2					
V. Oversensing-TWave Rx Withheld	0			I all all	فالتعاديات أراب		-	
V. Oversensing-Noise Rx Withheld	0	Dationt	>8 -					
AT/AF	0	Activity	6 -	~ ~	0.002.00	~ ~ ^	1.	
Time in AT/AF	<0.1 hr/day (<0.1%)	(hr/day)	1	~~~	~~~	~~~~	-	
Functional	Last Week		:1,					
Patient Activity	3.9 hr/day		Jul-22 Sep	-22 Nov-22 Jan	-23 Mar-23 M	lay-23 Jul	-23	
Therapy Summary	VT/VF	AT/AF	Pacing	(% of	Time Sind	ce 12-Ju	1-2023	9
Pace-Terminated Episodes	0	0	Total VP	1.3	3% (MVP C	On)		
Shock-Terminated Episodes	0	0	AS-VS	55.6	5%			
Total Shocks	0	0	AS-VP	0.3	2%			

CARDIAC RESYNCHRONIZATION THERAPY (CRT)

CRT devices are implantable devices which pace both ventricles to correct electric desynchrony and improve pumping efficiency. There are two types of CRT:

- CRT-P (pacemaker)
- CRT-D (defibrillator)

Reduces risk of death and hospitalization¹⁻¹²

Improves left ventricular systolic function¹⁻¹²

May improve patient symptoms¹⁻¹²

CRT-D and CRT-P patients may experience surgical complications and/or may not receive the benefit of device therapy as expected. With a device, there are surgical limitations and lifestyle limitations, such as avoiding exposure to magnets, which may impact device performance.

PACING DIAGNOSTICS

CRT is most effective when it achieves close to 100% biventricular pacing¹

Interruption of pacing may lead to worsening patient symptoms and decreased efficacy

BiV-pacing results in a narrower QRS compared to RV-only pacing

WRAPPING UP...

WRAPPING UI	Remember!			
After Implant	 Arm/Shoulder restrictions Activity and lifting restrictions Monitoring for infection 	 Devices are wicked smart 		
Know the NBG Code	 This will tell you A LOT about how the device will function Is Rate Response ON? 	fast and FUN They will alway		
Request Device Settings	 Lower Rate Upper Tracking Rate Upper Sensor Rate VF and VT detection zones % Pacing 	err on the side caution		
Bringing It All Together	 Monitor HRs during exercise, knowing device settings Communicate with the MD any changes to or concerns with rates 	 If you don't knowASK! 		

/S

of

Claire discovers that The Clapper operates on the same frequency as Don's pacemaker.

"Pump vigorously if you feel a palpitation. We're still battling with your insurance company for a better pacemaker."

Thank

