

Cardiac Rehab: Does it still work today?

Ileana L. Piña, MD, MPH

Professor of Medicine, Epidemiology and Population Health Albert Einstein College of Medicine Associate Chief of Cardiology for Academic Affairs Montefiore-Einstein Medical Center Bronx, NY Senior Staff Fellow FDA, CDRH

Meet Our Presenter:

lleana L. Piña MD, MPH, FAHA, FACC

Professor of Medicine & Epidemiology and Population Health Albert Einstein College of Medicine Associate Chief for Academic Affairs Division of Cardiology Staff Heart Failure/Transplant Montefiore Medical Center

Effects Of Immobilization

- Loss of muscle mass (20-25%)
 - contractile strength
 - Loss of ventilatory muscle, Drop in vital capacity
- Postural changes --response to circulating catecholamines
- Malnutrition and negative nitrogen balance in advanced
 HF
- Change in peripheral muscle in HF + deconditioning

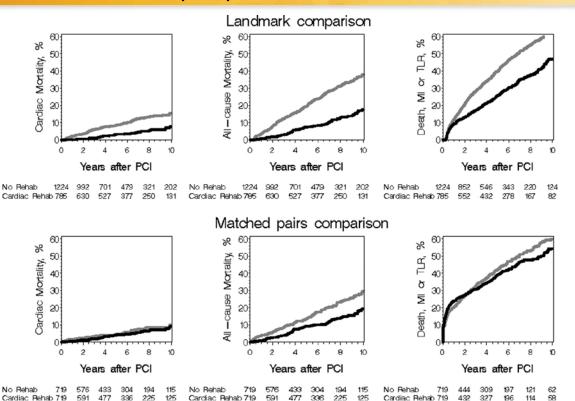
Potential Benefits of Exercise

Anti-atherosclerotic

Improved lipids Lower BP's Reduced adiposity ↑ Insulin sensitivity ↓ Inflammation

Anti-ischemic

- \downarrow Myocardial O2 demand
- 1 Coronary flow
- ↓ Endothelial dysfunction


Anti-thrombotic

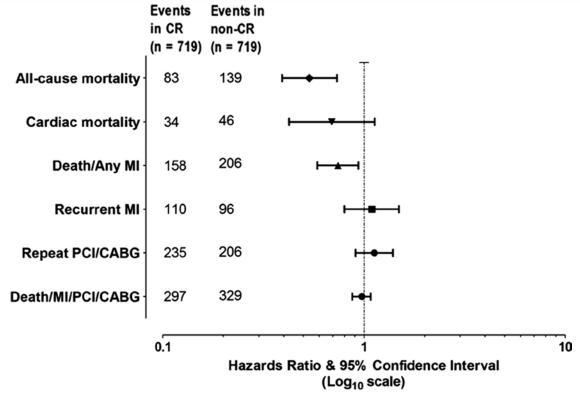
↓ Platelet adhesiveness
 ↑ Fibrinolysis
 ↓ Fibrinogen
 ↓ Blood viscosity

Anti-arrhythmic

↑ Vagal tone↓ Adrenergic activity

Kaplan–Meier curves showing the association between cardiac rehabilitation (CR) participation and outcomes.

Kashish Goel et al. Circulation. 2011;123:2344-2352


GET WITH THE

GUIDELINES

American Heart

Ite is why-

Association between cardiac rehabilitation (CR) participation and mortality in the propensity score-matched groups.

Kashish Goel et al. Circulation. 2011;123:2344-2352

American Heart

Ite is why-

GET WITH THE

GUIDELINES

2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update Incorporated Into the 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease

© American College of Cardiology Foundation and American Heart Association, Inc.

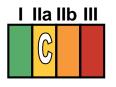
Treatment

Physical Activity

Physical Activity

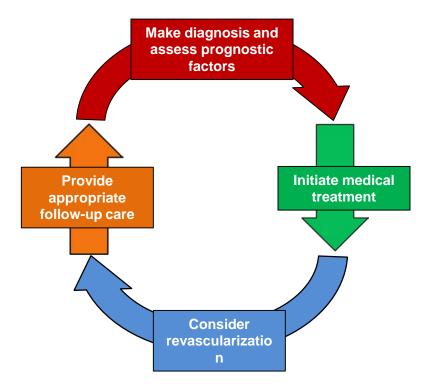
For all patients, the clinician should encourage 30 to 60 minutes of moderate-intensity aerobic activity, such as brisk walking, at least 5 days and preferably 7 days per week, supplemented by an increase in daily lifestyle activities (e.g., walking breaks at work, gardening, household work) to improve cardiorespiratory fitness and move patients out of the least-fit, least-active, high-risk cohort (bottom 20%).

For all patients, risk assessment with a physical activity history and/or an exercise test is recommended to guide prognosis and prescription.



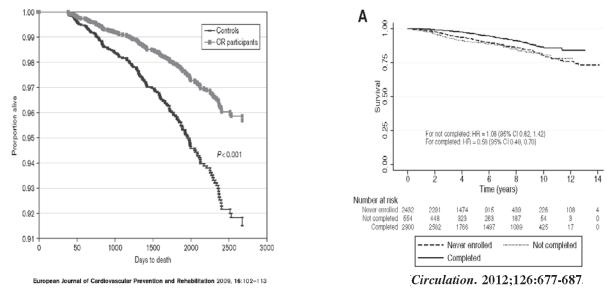
Physical Activity (cont.)

Medically supervised programs (cardiac rehabilitation) and physician-directed, home-based programs are recommended for at-risk patients at first diagnosis.


It is reasonable for the clinician to recommend complementary resistance training at least 2 days per week.

Helping Cardiovascular Professionals Learn. Advance. Heal.

Diagnosis and management of patients with stable ischemic heart disease



Mancini GBJ, Gosselin G, et al., Can J Cardiol 2014

Copyright © 2014, Canadian Cardiovascular Society

Provision of Appropriate Clinical Follow-Up Recommendation 2

- Patients with Stable Ischemic Heart Disease
 - Cardiac Rehabilitation Referral

Mancini GBJ, Gosselin G, et al., Can J Cardiol 2014

Copyright © 2014, Canadian Cardiovascular Society

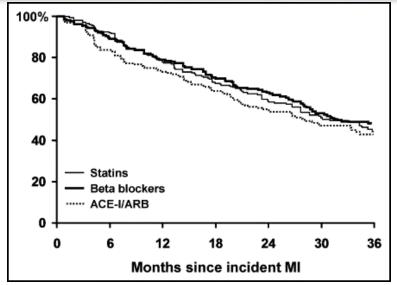
Provision of Appropriate Clinical Follow-Up **Recommendation 3**

- Patients with Stable Ischemic Heart Disease
 - Moderate-Vigorous Physical Activity

- Guidelines

To achieve health benefits, adults aged 18-64 years should accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic physical activity per week, in bouts of 10 minutes or more.

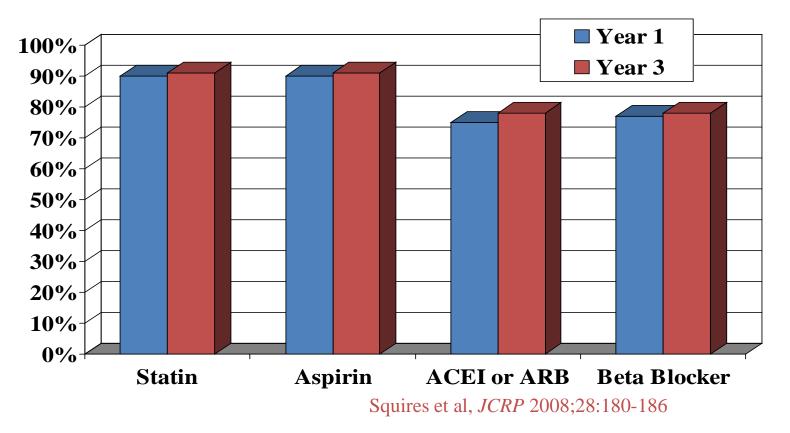
It is also beneficial to add muscle and bone strengthening activities using major muscle groups, at least 2 days per week.


More physical activity provides greater health benefits.

Mancini GBJ, Gosselin G, et al., Can J Cardiol 2014

Copyright © 2014, Canadian Cardiovascular Society

Medication Adherence


- Statins: 75% at discharge, 44% 3 years
- BB: 84% at discharge, 48% at 3 years
- ACE: 62% at discharge, 43% at 3 years

Am J Med. 2009 Oct;122(10):961.e7-13.

Medication Adherence with Cardiac Rehabilitation

All patients, not just post-MI

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Cross Mark

ORIGINAL INVESTIGATIONS

Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease

Cochrane Systematic Review and Meta-Analysis

Lindsey Anderson, PuD,^{*} Neil Oldridge, PuD,[†] David R. Thompson, PuD,[†] Ann-Dorthe Zwisler, MD,[§] Karen Rees, PuD,[†] Nicole Martin, MA,[¶] Rod S. Taylor, PuD^{*}

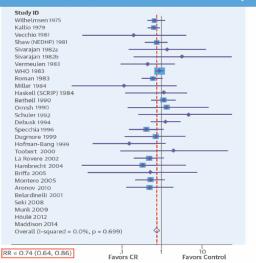
TABLE 3 Stratified Meta-Analysis by Patient, Intervention, and Study Characteristics at Longest Follow-Up

	All-Cause Mortality	CV Mortality	мі	CABG	PCI	Hospitalization
All studies	0.96 (0.88-1.04)	0.74 (0.64-0.86)	0.90 (0.79-1.04)	0.96 (0.80-1.16)	0.85 (0.70-1.04)	0.82 (0.70-0.96)
Case mix						
100% MI	0.89 (0.78-1.01)	0.75 (0.65-0.87)	0.89 (0.76-1.05)	0.67 (0.45-1.00)	0.87 (0.67-1.15)	0.71 (0.41-1.24)
<100% MI	1.06 (0.92-1.22)	0.63 (0.38-1.06)	0.73 (0.44-1.23)	1.06 (0.86-1.31)	0.82 (0.58-1.15)	0.82 (0.68-0.99)
Dose of exercise*						
<1,000	0.89 (0.26-3.15)	0.47 (0.19-1.15)	0.72 (0.30-1.70)	0.96 (0.35-2.66)	1.22 (0.34-4.34)	0.70 (0.48-1.00)
≥1,000	1.01 (0.89-1.15)	0.75 (0.65-0.86)	0.74 (0.59-0.93)	0.99 (0.78-1.27)	0.80 (0.62-1.03)	0.85 (0.71-1.01)
Type of CR						
Exercise only	0.94 (0.77-1.16)	0.65 (0.50-0.85)	0.76 (0.60-0.98)	0.98 (0.68-1.42)	0.87 (0.35-2.17)	0.61 (0.33-1.14)
Comprehensive CR	0.93 (0.841-1.03)	0.79 (0.66-0.94)	0.90 (0.72-1.14)	0.96 (0.77-1.19)	0.87 (0.71-1.07)	0.85 (0.72-1.00)
Duration of follow-up						
≤12 months	1.08 (0.51-2.33)	0.72 (0.62-0.84)	0.60 (0.39-0.91)	1.03 (0.74-1.44)	0.83 (0.54-1.27)	0.63 (0.46-0.88)
>12 months	0.96 (0.88-1.04)	1.00 (0.63-1.60)	0.92 (0.77-1.09)	0.93 (0.75-1.17)	0.84 (0.64-1.09)	0.92 (0.80-1.05)
Year of publication						
Pre-1995	0.85 (0.75-0.98)	0.78 (0.67-0.91)	0.96 (0.81-1.14)	0.87 (0.59-1.30)	0.80 (0.42-1.51)	0.85 (0.69-1.05)
Post-1995	1.03 (0.903-1.14)	0.56 (0.38-0.83)	0.76 (0.59-0.99)	0.99 (0.81-1.22)	0.86 (0.70-1.06)	0.78 (0.60-1.00)
Setting						
Center	0.91 (0.80-1.04)	0.75 (0.65-0.87)	0.96 (0.83-1.11)	0.97 (0.77-1.23)	0.90 (0.60-1.35)	0.89 (0.76-1.04)
Center + home	0.78 (0.40-1.53)	0.67 (0.30-1.47)	0.40 (0.14-1.11)	0.79 (0.44-1.44)	0.65 (0.37-1.14)	0.83 (0.46-1.50)
Home	1.02 (0.68-1.54)	0.87 (0.34-2.20)	0.48 (0.28-0.83)	1.01 (0.59-1.7)	0.79 (0.53-0.18)	0.60 (0.33-1.05)
Risk of bias						
Low (bias in <5 of 8 domains)	1.01 (0.88-1.17)	0.91 (0.22-3.74)	0.96 (0.69-1.33)	0.92 (0.69-1.21)	0.91 (0.70-1.18)	0.85 (0.61-1.20)
High (bias in >5 of 8 domains)	0.90 (0.80-1.02)	0.74 (0.64-0.86)	0.83 (0.69-1.00)	1.00 (0.79-1.28)	0.79 (0.59-1.06)	0.79 (0.65-0.97)
Study location, continent						
Europe	0.90 (0.80-1.02)	0.73 (0.62-0.87)	0.93 (0.79-1.09)	0.94 (0.74-1.19)	0.85 (0.65-1.13)	0.72 (0.56-0.92)
North America	1.10 (0.94-1.27)	0.89 (0.56-1.43)	0.62 (0.41-0.94)	1.05 (0.78-1.42)	0.78 (0.52-1.16)	0.95 (0.81-1.11)
Australasia	0.85 (0.35-2.07)	0.33 (0.01-7.88)	1.90 (0.33-10.72)	0.32 (0.07-1.55)	0.99 (0.32-3.02)	1.07 (0.74-1.54)
Other	0.62 (0.36-1.07)	0.58 (0.32-1.08)	0.25 (0.01-5.91)	NR	NR	0.27 (0.10-0.74)
Sample size						
≤150	0.81 (0.51-1.29)	0.58 (0.33-1.00)	0.54 (0.35-0.83)	0.78 (0.53-1.16)	0.82 (0.47-1.42)	0.60 (0.46-0.78)
>150	0.95 (0.86-1.05)	0.76 (0.65-0.88)	0.93 (0.78-1.11)	1.02 (0.83-1.26)	0.87 (0.70-1.08)	0.93 (0.83-1.05)
200	0.95 (0.86-1.05)	0.70 (0.05-0.88)	0.95 (0.78-1.11)	1.02 (0.65-1.20)	0.87 (0.70-1.08)	0.93 (0.83-1.05)

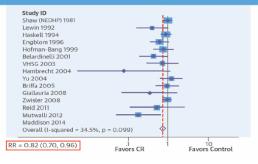
CENTRAL ILLUSTRATION Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease Versus Usual Care: CV Mortality and Hospitalization

Exercise-based Rehabilitation Vs. Usual Care: Cardiovascular Mortality

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 67, NO. 1, 2016 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.10.044


ORIGINAL INVESTIGATIONS

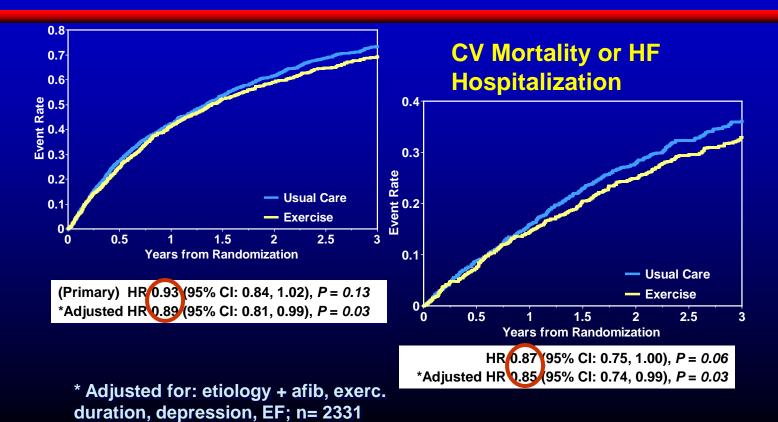
Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease


DeseMark

Cochrane Systematic Review and Meta-Analysis

Lindsey Anderson, PHD, * Neil Oldridge, PHD, † David R. Thompson, PHD, † Ann-Dorthe Zwisler, MD, § Karen Rees, PHD, | Nicole Martin, MA, ¶ Rod S. Taylor, PHD*

Exercise-based Rehabilitation Vs. Usual Care: Hospitalization



Anderson, L. et al. J Am Coll Cardiol. 2016; 67(1):1-12.

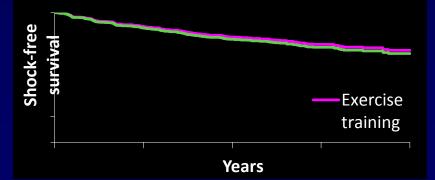
Box sizes are proportional to the weight of each study in the analysis, and the **lines** represent their 95% confidence intervals (CIs). The **open** diamond represents the pooled RR, and its width represents its 95% CI. CV = cardiovascular.

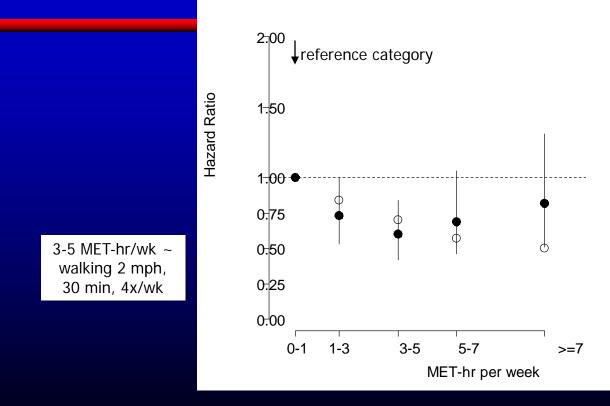
All-cause Mortality or Hospitalization

HF-ACTION Trial and Clinical End Points

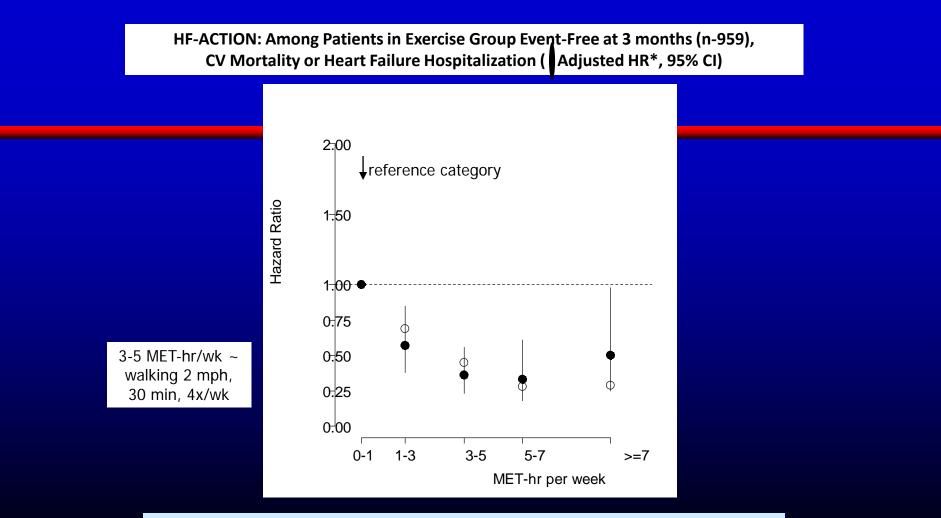
Primary Endpoint: Predicted KCCQ Overall Score

■ The 2-point difference in early change was significant

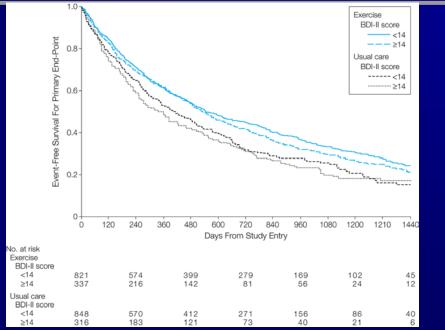



Serious Adverse Events

* Worsening HF, MI, unstable angina, serious adverse arrhythmia, stroke, TIA


	Usual Care N=1172	Ex Training N=1159
At least one CV event *	40%	37%
At least one ICD firing	23%	22%
Hospitalized after physical activity	2%	3%
Hospitalized for fracture of hip/pelvis	0.6%	0.3%
Deaths identified as possibly occurring within 3 hours of physical activity	0.4%	0.4%

HF-ACTION: Among Patients in Exercise Group Event-Free at 3 months (n-959), All-Cause Death or Hospitalization (Adjusted HR*, 95% CI)



*Adjusted for 19 of 60 candidate co-variates, over-all p < 0.03; 28.2 mo of follow-up

*Adjusted for 19 of 60 candidate co-variates, over-all p < 0.001; 28.2 mo of follow-up

Effects of Exercise Training on Depressive Symptoms in Patients With Chronic Heart Failure: The HF-ACTION Randomized Trial : Blumenthal et al. *JAMA*. 012;308(5):465-74.

Curves represent sample stratified on treatment group assignment and depressive symptom severity category. The number of participants at risk at selected time intervals for each group is displayed across the bottom of the plot.

DUKEDELOVIONE SALI B/S1/201E DICAL CENTERSOCIATION. All

Stage C: Nonpharmacological Interventions

Patients with HF should receive specific education to facilitate HF self-care.

Exercise training (or regular physical activity) is recommended as safe and effective for patients with HF who are able to participate to improve functional status.

Sodium restriction is reasonable for patients with symptomatic HF to reduce congestive symptoms.

Helping Cardiovascular Professionals Learn. Advance. Heal.

Stage C: Nonpharmacological Interventions (cont.)

Continuous positive airway pressure (CPAP) can be beneficial to increase LVEF and improve functional status in patients with HF and sleep apnea.

Cardiac rehabilitation can be useful in clinically stable patients with HF to improve functional capacity, exercise duration, HRQOL, and mortality.

Helping Cardiovascular Professionals Learn. Advance. Heal.

Rehab of LVAD Patients

- Among the most deconditioned of HF pts.
- Usually malnourished
- Wound issues
- Infection
- Extubation early is best
- OOB in chair early
- Muscle atrophy (heart failure + disuse)
- Skin breakdown
- Respiratory compromise
- Neurologic or infectious complications
- Psychological component
- Pre-conceived notion by staff in ICU

Rehab of LVAD Patients

Ambulate in room

- Coupled to learning re:LVAD function
- Ambulate in hall
 - Keep RPE 11-12 (Borg scale)
- Bicycle ergometer
 - 25rpm without loading
 - Steady torso
 - Minimizes drive line discomfort

Rehab of LVAD Patients

Treadmill

- Start 1 mph 0° elevation
- Work toward RPE of 13
- ETT with VO₂
 - Peak 15 cc/min/kg
 - Limited by the SV limit of the LVAD (83 cc)
 - Younger patients have higher chronotropic response.

Advice to Heart Failure Patients: General

- Need to stabilize HF symptoms
 - Patient euvolemic and well medicated

Conservation of energy techniques

- Pulling rather than pushing items
- Work at "waist" level
- Set up a schedule daily
- Heavier work in morning hours
- Avoid extremes of temperature
- Avoid physical activity shortly after meals

Return to Work Activity

- Majority of clerical jobs entail 3-5 METS of work only.
- The greater amount of time sitting at a desk, the lower the MET value
- Heavier activity related jobs may require higher MET levels up to 8-9 METS e.g., construction

Return to Work Activity

- Weight lifting may require testing: Is 50 lbs too much?
- Mental stress induced by an employment is difficult to assess
- Part time work initially, e.g. 4 hours

Return to Work Activity: Financial Considerations

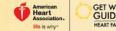
- Definition of disability may be different between social security and insurance
- Loss of wages
- Loss of coverage if return to work
- Spouse having insurance may be an important part of returning to work

Return to Work Activity

- Individualize need to return to work vs. desire to return to work
- Emotional benefits to the patient and family may be overriding
- An exercise test may be important
 - Add weight during the test, e.g., briefcase to mimic a work activity

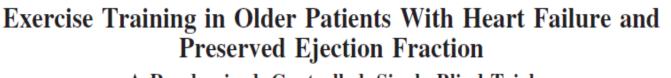
Heart Failure: Recreation Activities

- Can be used as a form of exercise training
- Enjoyable
- Low level—no need for high impact
- Previous experience or participation



- Inverse relation b/w intensity and duration, e.g., the higher the intensity, the shorter the duration
- Warm up and cool down
- Stretching
- Stop if sx occur
- Report if sx occur earlier than on previous occasions

Heart Failure: Recreation Activities


- Should there be a baseline exercise test?
- Pick an intensity below VT
- Give a progression to the exercise sessions, e.g., start with 15 min and progress
- Add resistive exercise if desired
- Evaluate the recreation e.g., doubles tennis
 - = lower MET level

- Post-MI
- Post-CABG
- Angina
- PCI
- Valve replacement or repair
- Heart transplant
- HFrEF

What about HF-PEF?

GET WITH THE

GUIDFUNES

American Heart

Ete is why

A Randomized, Controlled, Single-Blind Trial

Dalane W. Kitzman, MD; Peter H. Brubaker, PhD; Timothy M. Morgan, PhD;

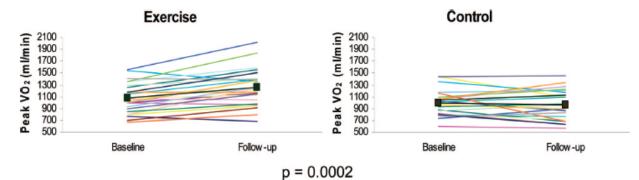


Figure. Individual and mean () responses of peak exercise Vo₂ following 16 weeks of supervised exercise training. Results are displayed in raw, nonindexed peak Vo₂, as this is uninfluenced by weight.

Circ Heart Fail. 2010;3:659-667.)

Provider Barriers

European Journal of Heart Failure (2011) 13, 347–357 doi:10.1093/eurjhf/hfr017

Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation

Massimo F. Piepoli^{1*}, Viviane Conraads², Ugo Corrà³, Kenneth Dickstein^{4,5}, Darrel P. Francis⁶, Tiny Jaarsma⁷, John McMurray⁸, Burkert Pieske⁹, Ewa Piotrowicz¹⁰, Jean-Paul Schmid^{11,12}, Stefan D. Anker¹³, Alain Cohen Solal¹⁴, Gerasimos S. Filippatos¹⁵, Arno W. Hoes¹⁶, Stefan Gielen¹⁷, Pantaleo Giannuzzi³, and Piotr P. Ponikowski¹⁸

- Lack of belief by health care providers on the benefits of ET in heart failure as well as other CVD
- Lack of ET sites and programs
- Lack of educated personnel

THE NES.

Patient Barriers

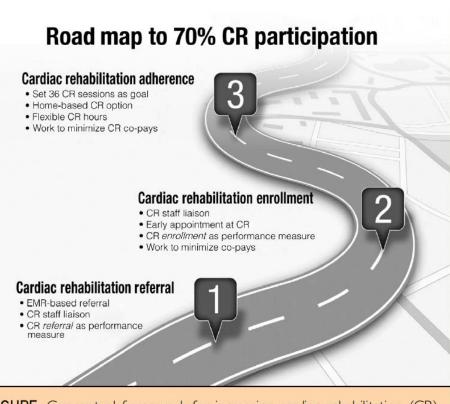
European Jo doi:10.1093

European Journal of Heart Failure (2011) 13, 347–357 doi:10.1093/eurihf/hfr017 POSITION STATEMENT

Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation

Massimo F. Piepoli¹⁶, Viviane Conraads², Ugo Corrà³, Kenneth Dickstein^{4,5}, Darrel P. Francis⁶, Tiny Jaarsma⁷, John McMurray⁸, Burkert Pieske⁹, Ewa Piotrowicz¹⁰, Jean-Paul Schmid^{11,12}, Stefan D. Anker¹³, Alain Cohen Solal¹⁴, Gerasimos S. Filippatos¹⁵, Arno W. Hoes¹⁶, Stefan Gielen¹⁷, Pantaleo Giannuzzi³, and Piotr P. Ponikowski¹⁸

- Social and economic factors: low educational level, low social support, work conflicts, lack of time
- Factors related to the health-care system: adequate transportation, no reimbursement, waiting lists
- Condition-related factors: severity of symptoms, the level of disability, the rate of progression, and the impact of co-morbidities
- Therapy-related factors: duration of exercise treatment, complexity
- Patient-related factors: attitudes towards exercise, motivation, personal beliefs, and expectations



SPECIAL ARTICLE

Increasing Cardiac Rehabilitation Participation From 20% to 70%: A Road Map From the Million Hearts Cardiac Rehabilitation Collaborative

Philip A. Ades, MD; Steven J. Keteyian, PhD; Janet S. Wright, MD; Larry F. Hamm, PhD; Karen Lui, RN, MS; Kimberly Newlin, ANP; Donald S. Shepard, PhD; and Randal J. Thomas, MD, MS

FIGURE. Conceptual framework for increasing cardiac rehabilitation (CR) participation from 20% to 70%. EMR = electronic medical record.

Strategy	Brief description	Outcome	Reference
Automatic in-patient CR referral system	CR referral is carried out as an automatic EMR order for all eligible patients	CR referral was 70% (compared with 32% for usual care); enrollment was 61% (compared with 29% for usual care)	38
Inpatient "liaison" to help educate and refer patients to out-patient CR	A liaison or "coach" meets with inpatients who are eligible for CR, educating and guiding them in the CR enrollment process	CR referral was 59% (compared with 32% for usual care); enrollment was 51% (compared with 29% for usual care)	38
Combination of automatic CR referral system and "liaison"	Combination of the 2 strategies listed above	CR referral was 85% (compared with 32% for usual care); enrollment was 74% (compared with 29% for usual care)	38
Limit or eliminate out-of-pocket expenses to patients for CR services	Negotiate with insurance companies to limit or eliminate co-payments and other out-of-pocket expenses for patients enrolled in CR	Studies of preventive medication adherence suggest that reducing or eliminating co-payments improves utilization and adherence	39,40
Inclusion of home-based CR option for patients who are not able to attend a center-based CR program	Protocol-driven, nurse-managed home- based approaches to CR delivery provide CR services to patients at home for low- to moderate-risk patients	Outcomes are similar and participation rates may be higher in home-based CR programs compared with center-based CR programs	41
Flexible hours of operation	Increased flexibility of CR center hours to include early morning, noontime, after work, and weekend hours	10% Improvement in enrollment and participation; will require creative staff scheduling to avoid increasing costs of program delivery	4
Early outpatient appointment established before hospital discharge	Inpatient staff members work and EMR set up an outpatient CR enrollment appointment for each eligible patient within 12 days of hospital discharge	20%-25% Improvement in CR enrollment	42
Use of CR referral performance measures in a quality improvement system	CR referral is assessed, reported, and acted upon in a systematic quality improvement program	CR referral rates improved by 12.5% over 5 years in centers participating in a quality improvement program	43

CR = cardiac rehabilitation; EMR = electronic medical record.

Contact Us to Learn More

Steve Dentel BSN, RN, CPHQ

National Director, Field Programs and Integration steve.dentel@heart.org

Tanya Lane Truitt, RN MS

Sr. Program Manager Quality Systems Improvement tanya.truitt@heart.org

Liz Olson, CVA Program Manager, Get With The Guidelines – Heart Failure liz.olson@heart.org

> Stay informed on the latest updates from all of the Get With The Guidelines programs.

Thank you for your active participation and contributions to GWTG-HF!

life is why es por **la vida** 全為生命